

Home Search Collections Journals About Contact us My IOPscience

Anisotropy dependence of anomalous Hall effect in canonical spin glass alloys

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys.: Condens. Matter 19 145222 (http://iopscience.iop.org/0953-8984/19/14/145222)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 17:27

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 19 (2007) 145222 (5pp)

Anisotropy dependence of anomalous Hall effect in canonical spin glass alloys

K Yamanaka, T Taniguchi, T Yamazaki, N Ashitaka, Y Morimoto, Y Tabata and S Kawarazaki

Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan

E-mail: yamanaka@ltfridge.ess.sci.osaka-u.ac.jp

Received 29 August 2006 Published 23 March 2007 Online at stacks.iop.org/JPhysCM/19/145222

Abstract

The influence of the Dzyaloshinsky–Moriya (DM) anisotropy on the extraordinary Hall coefficient $R_s \equiv \rho_{ex}/M$, where ρ_{ex} is the extraordinary Hall resistivity and M is the magnetization, is investigated in canonical spinglass (SG) alloys. The strength of the DM anisotropy in the alloys is changed systematically by doping with a third impurity that is non-magnetic. The Hall resistivity ρ_{H} , the magnetization M and the resistivity ρ were measured in the series of $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ alloys with x = 0, 0.007, 0.03, and 0.05. The difference ΔR_s between the values of zero-field-cooled and field-cooled R_s , below the SG transition temperature, clearly increased with the amount of Au impurities. The dependence of the chirality contribution to R_s on the DM anisotropy is discussed in relation to the theoretical work for the chirality-driven anomalous Hall effect in the weak coupling regime.

For many decades, the accepted parameterization of the Hall resistivity ρ_H in magnetic materials has been in terms of the canonical expression

$$\rho_{\rm H} = \rho_{\rm ord} + \rho_{\rm ex} = R_0 H + 4\pi R_{\rm s} M,\tag{1}$$

where ρ_{ord} and ρ_{ex} are the ordinary and the extraordinary Hall resistivity respectively, R_0 and R_s are the ordinary and the extraordinary Hall coefficient respectively, H is the magnetic field and M is the magnetization. Recently, some features [1, 2] of R_s have been reported in canonical spin-glass (SG) alloys which are not understood by the conventional theory [3]. This behaviour of R_s indicates the existence of the chirality-driven extraordinary Hall effect term as predicted by the theories of the chirality mechanism of the Hall effect [4, 5]. These theories also predict that the Dzyaloshinsky–Moriya (DM) anisotropy plays an important role in the appearance of the chirality-driven extraordinary Hall effect term. The strength of the DM anisotropy of the canonical SG alloys is changed systematically by doping with a third impurity that is non-magnetic. The main purpose of the present article is to investigate how the DM anisotropy

Figure 1. (a) Temperature dependence of *M* for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G. (b) Temperature dependence of $\rho_{\rm H}$ for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G. The arrows mark $T_{\rm g}$ (2000 G).

Table 1. d and $T_g(H)$ for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$.

	X				
	0	0.007	0.03	0.05	
d	0.095	0.129	0.203	0.252	
$T_{\rm g}$ (10 G) (K)	28.5	29.0	34.5	36.5	
T _g (2000 G) (K)	19.0	20.0	20.5	21.5	

act in the chirality-driven extraordinary Hall effect mechanism by simultaneously measuring $\rho_{\rm H}$, M and the resistivity ρ for the series of AgMn alloys whose anisotropy is systematically controlled by doping with Au impurities.

The simultaneous measurement of $\rho_{\rm H}$, M and ρ were made from 8 to 50 K in a field of 2000 G under zero-field-cooled (ZFC) and field-cooled (FC) conditions. The samples used for the measurements are $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ alloys with x = 0, 0.007, 0.03, and 0.05. The details of the measurement and sample preparation are described in [1]. Table 1 shows the SG transition temperature $T_g(H)$ and the anisotropy parameter d of the alloys. The anisotropy parameter d is defined as $d \equiv D/J$, where J and D are the exchange and anisotropy strengths respectively. The SG transition temperatures $T_g(H)$ were determined from the magnetization measurements under ZFC and FC conditions. The values of d were calculated by using the formula in [6]. The value of T_g (10 G) increases in proportion to $d^{0.8}$, which is consistent with previous studies [6].

Figure 1(a) shows the temperature dependence of M for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G [7]. The shift of T_g (2000 G) by doping Au impurities is also proportional to $d^{0.8}$. We observed that the doping has no effect on the magnitude of M in the high-temperature

Figure 2. Temperature dependence of R_s for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G. It is noted that the temperature is divided by T_g (2000 G). The arrows mark T_g (2000 G).

region ($T \ge 150$ K). On the other hand, the magnitude of M around T_g (2000 G) decreases with increasing concentration of Au impurities. This behaviour may be due to mean free path effects [8]. Figure 1(b) shows the temperature dependence of ρ_H for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ which was simultaneously measured with M [7]. The behaviour of ρ_H is similar to that of M, and the differences between ZFC and FC ρ_H appear below T_g (2000 G). The magnitude of ρ_H around T_g (2000 G) also decreases with Au concentration.

The Hall resistivity ρ_H is the sum of ρ_{ord} and ρ_{ex} . Extrapolations to high temperature to obtain an estimate of ρ_{ord} for the present samples indicate that R_0 is about $-8 \times 10^{-13} \Omega \text{ cm G}^{-1}$. R_s is determined by using the value of R_0 and the ρ_H and M data.

The temperature dependence of R_s for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G is shown in figure 2. The differences ΔR_s between the values of ZFC and FC R_s in the low-temperature region $(T/T_g (2000 \text{ G}) < 1)$ are observed in all samples. The difference ΔR_s clearly increases with the amount of Au impurities. In particular, ΔR_s for $(Ag_{0.95}Au_{0.05})_{0.9}Mn_{0.1}$ is as large as those of AuFe [1] and AuMn [2].

In the conventional theory [3], $R_s = A\rho + B\rho^2$, where ρ is the resistivity and A and B are constants relevant to the detailed band structure of the conduction electrons. The temperature dependence of ρ , as shown in figure 3, is monotonic even around $T/T_g(2000 \text{ G}) = 1$, and the differences between ZFC and FC ρ are not observed in any samples. Therefore, the observed ΔR_s are not explained by the conventional theory.

Tatara and Kawamura have shown that the uniform chirality χ_0 contributes to the extraordinary Hall resistivity ρ_{ex} by a perturbation expansion to the weak coupling s–d Hamiltonian [4] as follows:

$$\rho_{\rm ex} = (A\rho + B\rho^2)M + C\chi_0, \tag{2}$$

where *C* is a constant relevant to the detailed band structure of the conduction electrons. The uniform chirality χ_0 is the sum of the local chirality $\chi_{ijk} \equiv S_i \cdot (S_j \times S_k)$ weighted by a geometrical factor which depends on the distance between the spins. Noting the geometrical factor, the contribution from χ_{ijk} of three spins on the triangle $P_i P_j P_k$ to χ_0 decays rapidly as $\sim e^{-3r/2l}/(k_F r)^3$ [4], where *r* is the distance, k_F is the Fermi wave number, *l* is the mean free

Figure 3. Temperature dependence of ρ for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ in a field of 2000 G. It is noted that the temperature is divided by T_g (2000 G). The arrows mark T_g (2000 G). The dotted lines show the result of the linear fitting below 30 K. ρ_0 is the residual resistivity.

Table 2. ρ_0 and *l* for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$.

	x				
	0	0.007	0.03	0.05	
$\rho_0 \ (10^{-6} \ \Omega \ cm)$	15	16	17	21	
<i>l</i> (Å)	54	51	49	39	

path and P_i , P_j and P_k are the positions of S_i , S_j and S_k respectively. This means that χ_{ijk} of three spins on the triangle $P_i P_j P_k$ having side-length up to l dominantly contributes to χ_0 . Therefore the contribution from χ_{ijk} to the Hall effect disappears when the average distance r_{ave} between the spins is longer than l. Table 2 shows the residual resistivity ρ_0 and l for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$. As shown in figure 3, values of ρ_0 are determined from the extrapolation to T = 0 in the temperature dependence of ρ . The mean free paths l are estimated by using the value of ρ_0 , assuming that collisions of the conduction electrons with impurities dominate ρ in the low-temperature region. Because $r_{ave} \simeq 6$ Å in $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$, l is longer than r_{ave} . Therefore there are a lot of triangles $P_i P_j P_k$ having side-length up to l and the contribution from χ_{ijk} to χ_0 should appear in the present samples. However, since spins are frozen in a spatially random manner in the SG ordered state, the sign of χ_{ijk} appears randomly, which inevitably leads to the vanishing of the uniform chirality, $\chi_0 = 0$.

It thus appears that the chirality-driven extraordinary Hall effect vanishes in bulk SG sample. To examine the possible coupling between χ_0 and M, Tatara and Kawamura have looked into the effective Hamiltonian of the spin–orbit interaction H_{so} , treating s–d interaction as a perturbation. They have also shown that the effective Hamiltonian which comes from the second-order contribution contains a term $H_{so}^{(2)} \sim EM\chi_0$ [4], where E is a constant which represents the strength of the coupling between χ_0 and M. The chiral symmetry-breaking term $H_{so}^{(2)}$ guarantees χ_0 to be induced if the sample is magnetized. This means that the M is a 'chiral field' conjugate to χ_0 . Then the chiral susceptibility X_{χ} is defined as $X_{\chi} \equiv \chi_0/EM$ and R_s is

Figure 4. Anisotropy parameter *d*-dependence of ΔR_s for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ at $T/T_g(2000 \text{ G}) = 0.5$.

represented as follows [5]:

$$R_{\rm s} \equiv \rho_{\rm ex}/M = (A\rho + B\rho^2) + CEX_{\chi}.$$
(3)

Noting the chiral symmetry-breaking term $H_{so}^{(2)}$ is essentially the DM anisotropy, two important implications of the DM anisotropy dependence of R_s are provided. First, χ_0 is not induced in the system with vanishing DM anisotropy even if the sample is magnetized. Therefore the chiral susceptibility term of R_s should vanish in the system with vanishing DM anisotropy, $CEX_{\chi} = 0$. Second, the strength of the coupling between χ_0 and M depends on the DM anisotropy. Therefore the chiral susceptibility term of R_s should depend on the DM anisotropy.

In our experimental results, ΔR_s , which represents the term $CE\Delta X_{\chi}$, clearly increases with Au concentration, where ΔX_{χ} is the difference between the values of ZFC and FC X_{χ} . Figure 4 shows the *d*-dependence of ΔR_s for $(Ag_{1-x}Au_x)_{0.9}Mn_{0.1}$ at $T/T_g(2000 \text{ G}) = 0.5$. One can see that $\Delta R_s \sim 0$ when d = 0 and ΔR_s is roughly proportional to *d*. According to the theoretical prediction by Tatara and Kawamura [4], this observation indicates that the DM anisotropy acts as a 'chiral symmetry-breaking field' inducing χ_0 in the presence of *M*, which results in the chirality-driven extraordinary Hall effect in canonical SG alloys.

References

- [1] Taniguchi T, Yamanaka K, Sumioka H, Yamazaki T, Tabata Y and Kawarazaki S 2004 Phys. Rev. Lett. 93 246605
- [2] Pureur P, Wolff Fabris F, Schaf J, Vieira V N and Campbell I A 2004 Europhys. Lett. 67 123
- [3] Kaplus R and Luttinger J M 1954 Phys. Rev. 95 1154
- [4] Tatara G and Kawamura H 2002 J. Phys. Soc. Japan 71 2613
- [5] Kawamura H 2003 Phys. Rev. Lett. 90 047202
- [6] Fert A, de Courtenay N and Bouchiat H 1988 J. Physique 49 1173
- [7] Yamanaka K, Taniguchi T, Yamazaki T and Kawarazaki S Proc. 24th Int. Conf. on Low Temperature Physics (AIP Conf. Proc. 850) to be published
- [8] Jagannathan A, Abrahams E and Stephem J M 1987 Phys. Rev. B 37 436